Quantitative Transformation for Implementation of Adder Circuits in Physical Systems Author=Jeff Jones, James G.H. Whiting, Andrew Adamatzky

نویسندگان

  • Jeff Jones
  • James G.H. Whiting
  • Andrew Adamatzky
چکیده

Computing devices are composed of spatial arrangements of simple fundamental logic gates. These gates may be combined to form more complex adding circuits and, ultimately, complete computer systems. Implementing classical adding circuits using unconventional, or even living substrates such as slime mould Physarum polycephalum, is made difficult and often impractical by the challenges of branching fan-out of inputs and regions where circuit lines must cross without interference. In this report we explore whether it is possible to avoid spatial propagation, branching and crossing completely in the design of adding circuits. We analyse the input and output patterns of a single-bit full adder circuit. A simple quantitative transformation of the input patterns which considers the total number of bits in the input string allows us to map the respective input combinations to the correct outputs patterns of the full adder circuit, reducing the circuit combinations from a 2:1 mapping to a 1:1 mapping. The mapping of inputs to outputs also shows an incremental linear progression, suggesting its implementation in a range of physical systems. We demonstrate an example implementation, first in simulation, inspired by self-oscillatory dynamics of the acellular slime mould Physarum polycephalum. We then assess the potential implementation using plasmodium of slime mould itself. This simple transformation may enrich the potential for using unconventional computing substrates to implement digital circuits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative transformation for implementation of adder circuits in physical systems

Computing devices are composed of spatial arrangements of simple fundamental logic gates. These gates may be combined to form more complex adding circuits and, ultimately, complete computer systems. Implementing classical adding circuits using unconventional, or even living substrates such as slime mould Physarum polycephalum, is made difficult and often impractical by the challenges of branchi...

متن کامل

Towards Physarum binary adders

Plasmodium of Physarum polycephalum is a single cell visible by unaided eye. The plasmodium's foraging behaviour is interpreted in terms of computation. Input data is a configuration of nutrients, result of computation is a network of plasmodium's cytoplasmic tubes spanning sources of nutrients. Tsuda et al. (2004) experimentally demonstrated that basic logical gates can be implemented in forag...

متن کامل

Slime mould logic gates based on frequency changes of electrical potential oscillation

Physarum polycephalum is a large single amoeba cell, which in its plasmodial phase, forages and connects nearby food sources with protoplasmic tubes. The organism forages for food by growing these tubes towards detected foodstuff, this foraging behaviour is governed by simple rules of photoavoidance and chemotaxis. The electrical activity of the tubes oscillates, creating a peristaltic like act...

متن کامل

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

متن کامل

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015